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Abstract

The field of side channel analysis (SCA) has increasingly been using Deep Learning
to enhance the attacks. However, attack evaluation metrics, like Guessing Entropy
(GE) and Success Rate (SR), are computationally inefficient. Furthermore, traditional
Deep Learning metrics, like accuracy and precision, are not suitable for evaluating Deep
Learning models in the context of SCA, as classes are often imbalanced. However,
recently Zhang et al. have proposed a new evaluation metric for SCA, Cross Entropy
Ratio (CER), that provides a good indication of the success of the attack and is viable
to embed in Deep Learning Algorithms. Additionally this metric can be used as a loss
function to train better models when training data is imbalanced. Throughout this
report, a reproduction of the results of the paper introducing CER will be showcased,
and a self-developed metric, the Log-Likelihood Ratio (LLR), will be introduced as
well. These two metrics were compared to Cross Entropy (CROSS) and each other
as loss functions, using several neural network architectures and data-sets. The final
results of this report will showcase that CER, as a loss function, in the context of
SCA, when classes are imbalanced, is better than using regular Cross Entropy. LLR
performs slightly worse than CER in almost every scenario, but is generally better
than Cross Entropy. Therefore, this report shows that the results from Zhang et al.
are reproducible and the CER metric can be used as a evaluation metric to more
accurately evaluate Deep Learning models.

1 Introduction
Side channel analysis (SCA) is a type of attack that exploits the weakness of physical im-
plementations instead of software vulnerabilities, as was proposed by Kocher [10]. Recently,
Deep Learning techniques have seen adaptation in the field of SCA and show compara-
ble, and sometimes even better, performance than the more conventional methods. Deep
Learning SCA might seem promising but it still remains the question why exactly Deep
Learning SCA works so well in certain applications and situations [1]. Deep learning SCA
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is effectively done by mapping it to a supervised classification problem, a problem that is
well studied and known by now. A recent discovery by Masure et al. [14] indicates that
the Negative Log Likelihood is related to a lower bound of Mutual Information between the
sensitive intermediate value and the leakage. Therefore, the deep learning paradigm might
be suitable for SCA from a worst-case point of view.

However, deep learning models are evaluated on metrics like accuracy and precision,
whilst in the SCA world evaluation metrics like Guessing Entropy and Success Rate [24] are
more common. These metrics differ quite a lot and on top of this, deep learning metrics
might be misleading for SCA according to Cagli et al. [4]. Suppose that the attacker can
acquire several traces for varying plaintexts, the accuracy metric is not sufficient alone to
evaluate the attack performance. The accuracy metric only takes into consideration the
label corresponding to the maximal score and does not consider the other labels, a metric
like Success Rate would.

Deep learning is also prone to be influenced by class imbalance, as this could cause a
bias towards a majority class of the training set, and therefore have sub-par performance.
Whilst there are some proposed methodologies for imbalanced data, like using re-sampling
techniques to re-balance the data [15, 18] or compensating for the minority class in the
training algorithm [26], these techniques are not always optimal as they cannot use the full
sets of training data.

Therefore, doing research into the right metrics for Deep Learning SCA is crucial. The
issues traditional SCA metrics have with evaluation of attack performance and the issues
that arise when class imbalance comes into play are the main driving forces behind the
research of this report.

In this paper, the metric proposed by Zhang et al. [33] will be discussed and a new
metric will be proposed. The metric of Zhang et al. is the Cross Entropy Ratio (CER),
which evaluates the performance of deep learning models for SCA. As CER does not require
the large amount of attacks that Guessing Entropy and Success Rate do, it can be calculated
faster and can thus be used as a Deep Learning SCA metric. The CER metric can also be
used as a loss function and shows improvements with imbalanced data compared to more
traditional approaches. In this report another metric will be introduced, the Log-Likelihood
Ratio (LLR), which approximates the ratio of the key likelihood compared to the likelihood
of random other keys. LLR can also be used as a loss function, in the similar fashion as
CER.

2 Background
Deep learning has become a fast growing research area in machine learning and pattern
recognition society. It has gained success in the field of speech recognition, computer vision
and language processing, and it is making strides in other fields now as well. A Deep Neural
Network (DNN) is defined as an artificial neural network with multiple hidden layers of
neurons between the input and output layers [21]. Deep networks are also more complex
and computationally demanding than traditional networks, as the neurons they consist of
can have indirect effects on each other.

2.1 Side channel analysis (SCA)
One type of SCA is profiled side channel attacks. These profiled side channel attacks consist
of two steps: first the adversary creates a leakage model by analyzing the leakages of recre-
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ation of the victim’s device, and afterwards they exploit this leakage model to extract the
key from the victim’s device. These leakages, such as power consumption and electromag-
netic emanation, are often obtainable with high quality and low cost. Some variants of these
profiled side channel attacks are the stochastic attack [22] and the (pooled) template attack
[5], there also exist non-profiled SCA attacks that only utilise an attacking phase, such as
the Mutual Information Analysis [6], Correlation Power Analysis [3], and Differential Power
Analysis [9]. However, what is quite interesting about these profiled side channel attacks
is that they can be seen as a classification problem, where the adversary needs to classify
intermediate values based on the leakage traces. Therefore we can perform these profiled
side channel attacks with supervised learning.

2.2 Supervised learning
Supervised learning is the learning of a function through labelled training data. As the
training data is labelled, there is a desired output for every input. Supervised learning
first analyses the training data, and then tries to generate a function to predict labels for
unlabelled data.

2.3 Multilayer Perceptron (MLP)
A Multilayer Perceptron (MLP) is a feed-forward artificial neural network that has at least
three layers of neurons [17]. These three layers are the input layer, the hidden layer and
the output layer. Each neural unit, except for the input layer’s neurons, uses a nonlinear
activation function such as softmax [23]. MLP uses a form of supervised learning called
back-propagation for training [19]. The multiple layers and non-linear activation functions
make it so that MLPs can recognize and classify data that is not linearly separable, unlike a
linear perceptron. The way neural networks classify how close they are to the desired output
is through loss functions. These loss functions significantly increase the ability of the neural
network to predict things like paths and ranking [29], of which the latter is key to SCA.

2.4 Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN) are a type of feed-forward DNN that exists out
of multiple layers. Given this, there exist many different variants of CNN architectures
[7]. However, the basic structure of each variant is the same. They each consist out of
four types of layers: the convolutional, pooling, fully-connected and output layers [32]. The
convolutional layer is made up out of several convolutional kernels, and aims to learn feature
representations of the inputs, this is done by computing different feature maps in each of
its kernels. The usage of activation functions also occurs in the convolutional layers, a
common activation function here is the tanh [11] or ReLU [16] function. The pooling layer
computes shift-invariances by reducing the resolution of the feature maps, it can be found
most often between two convolutional layers, as all feature maps of the pooling layer are
connected to their corresponding feature map of the connected convolutional layers. Two
kind of pooling operations are used most often, the average pooling operation [27] and the
max pooling operation [2]. By placing multiple convolutional and pooling layers behind
each other, there is a gradual extraction of higher-level feature representations [12]. The
fully-connected layers come after these multiple stacked convolutional and pooling layers [8].
The fully-connected layers aim to perform high-level reasoning by connecting all previous
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neurons, and then generating global semantic information from that. Intuitively, last layer
is always the output layer, for which commonly the softmax function gets used in SCA.

If the loss function of the CNN gets minimized, and therefore the difference between the
current output and the desired output of the CNN, the best possible set of parameters for
the CNN is found. Therefore training a CNN is an optimization problem.

2.5 Guessing Entropy (GE)
One of the ways to measure the vulnerability of encryption against a side channel analysis
(SCA) is the Guessing Entropy (GE), originally proposed by Massey et al. [13]. GE measures
the average number of key candidates to test after the side channel attack [24]. The higher
the GE, the more wrong key guesses have to be checked before the correct key value is
considered. Therefore, GE measures the average computation cost required for a successful
side channel attack and is a good leakage evaluation metric [34].

Guessing Entropy can be defined as:

GE(Na) = E(gSa
(k∗))

where E is the mean function, Na is the set of the attack traces, gSa
is a vector of key

guesses ordered by their predicted log-likelihood, for a random subset Sa ⊂ Na, and gSa
(k∗)

is the index of the correct key hypothesis k∗. Definition based on Massey et al. [13].

2.6 Success rate
Success rate (SR) is also a commonly used metric in SCA [24]. Success rate measures the
probability that an attacker guesses the correct key within a certain number of leakage
measurements [20]. An intuitive way of assessing the Success Rate is to perform the attack
several times and estimate the Success Rate based on this. However, this might be too
expensive, both time and computation wise. Therefore, suggestions have been made for
approximations of the Success Rate, for example the one by Standeart et al. [25].

Success Rate can be defined as:

SR(Na) = Pr[gSa(k
∗) = 1]

where Pr[x] is the probability of x, Na is the set of the attack traces, gSa is a vector of key
guesses ordered by their predicted log-likelihood, for a random subset Sa ⊂ Na, and gSa(k

∗)
is the index of the correct key hypothesis k∗ [14]. Note that if gSa

(k∗) = 1 the attack is
successful because the correct key is the highest ranked key.

3 Metrics
The main problem with metrics like Success Rate and Guessing Entropy is that they are
computationally hard to estimate as a large number of attacks need to be mounted to get
an accurate estimation. On the other hand, the Deep Learning metrics, like accuracy and
precision, do not give an accurate view of how successful an attack will be, especially when
there is class imbalance [18]. Because of this, there is a need for metrics that can be efficiently
computed and give an accurate indication of how successful an attack will be. Additionally,
a metric that can be computed efficiently might have extended applications as a loss function
for the Deep Learning models.
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Several different metrics have been developed over the past few years. Negative Log-
Likelihood (NLL) is a proposed loss function for which it has been shown that its minimiza-
tion is asymptotically equivalent to minimizing Cross Entropy [14]. Another metric that is
more focused on evaluation of a model is the Leakage Distribution Difference (LDD) [28].

In this report Cross Entropy ratio (CER) proposed by Zhang et al. [33] will be further
studied. The results Zhang et al. obtained will be reproduced, and the effectiveness of
CER as a loss function for additional state-of-the-art Deep Learning architectures will be
evaluated. Additionally, we propose a new metric that combines the ideas behind NLL and
CER. In this section both of these metrics will be described in more detail.

3.1 Cross-entropy ratio
Cross Entropy for a key k ∈ K, where K is the space of possible keys, is defined as:

CE(k) = H(Pr[X,Lk],Mθ[L
k]) (1)

Here Pr[X,Lk] is the joint distribution for k ∈ K, Mθ[L
k] is the predicted distribution for

k ∈ K and H is the Shannon-Entropy function. Lk denotes the labels generated with a
certain key hypothesis k ∈ K.

Now let k∗ ∈ K be the correct key. Then CER is defined as

CER =
CE(k∗)

Ek 6=k∗(CE(k))
(2)

3.2 Log-Likelihood ratio
Log-Likelihood for a key candidate k ∈ K and a model Mθ is defined as:

LL(k) =

N∑
i=1

log(Mθ(l
k
i )) (3)

Where Lk =


lk1
lk2
...
lkN

 is the vector of labels generated for a key candidate k ∈ K with N

samples and Mθ(l
k
i ) is the predicted probability for label lki .

Then the Log-Likelihood ratio is defined similarly to CER for a correct key k∗:

LLR =
LL(k∗)

Ek 6=k∗(LL(k))
(4)

3.3 Estimating LLR and CER
To use these functions as loss functions in a Deep Learning model, fast methods to estimate
them are required. As described by Zhang et al. [33] the nominator for CER can be
computed efficiently by calling the machine learning libraries’ function to compute Cross
Entropy. Additionally they show that the denominator can be computed by shuffling the
correct labels and then computing the Cross Entropy as above.
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To estimate LLR something similar can be done. The Log-Likelihood (LL) can be
computed for the correct labels to compute the nominator. Subsequently, these labels
can be shuffled, and then the LL of this new set of labels can be computed to estimate
Ek 6=k∗(LL(k)).

4 Experimental Evaluation of CER as metric
In this section some of the experiments to evaluate CER as a metric for Deep Learning SCA
are reproduced. These experiments were conducted in the same way as they were by Zhang
et al. [33]. Using the MLP from Benadjila et al. [1], several models were trained with
varying batch size and epochs. Then on a separate attacking set, the GE and CER were
computed. These experiments were conducted for both the Identity (ID) leakage model,
and the Hamming Weight (HW) leakage model. It should be noted that for these models
categorical Cross Entropy was used as the loss function.

As can be seen in Figure 1, the models with better Guessing Entropy generally also have
lower CER scores. This leads to the conclusion that CER can be a good metric to evaluate
the effectiveness of a model.

(a) Results using HW leakage model (b) Results using ID leakage model

Figure 1: Results on the ASCAD data-set with Cross Entropy Ratio (CER) and varying hyperpa-
rameters

5 Experimental Evaluation of CER and LLR as loss func-
tions

In this section several experiments to evaluate the effectiveness of CER and LLR as loss
functions were conducted. First, the speed of the execution of all functions was tested.
Secondly, to test the effectiveness of the loss functions, different types of models with several
different hyperparameter setups were trained, using categorical Cross Entropy as a loss
function as a control. Experiments have been run on several public data sets. For the
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synchronized cases the AES_HD1, DPA_v4_22 and the synchronized cases of ASCAD
with a fixed key3 are used. For these synchronized cases the models that were used are
the best MLP as found by Benadjila et al. [1], and the CNN models that were tuned for
the specific data-sets by Zaid et al. [31]. Additionally some models were ran with an Early
stopping callback4, monitoring valuation loss, with a patience of 20 epochs and restoring the
best model. For the desynchronized cases the AES_RD5 data-set and the desynchronized
cases of the fixed key ASCAD6 set were used. The models used were the specifically tuned
models of Zaid et al. [31]. To run the experiments scripts based on the work by Zaid et al.
were used.

5.1 Speed of the loss functions
The speed of the varying loss functions used throughout the paper has been measured and
compared. This gave the results that can be seen in Table 1.

Every loss function was ran a hundred times to get a value for the time, and this was
then done in turn a thousand times to get a good estimation on the average run time. What
we can see from the results is that Cross Entropy Ratio (CER) and Log-Likelihood Ratio
(LLR) are roughly 3 times as slow as the Cross Entropy (CROSS) function, which makes
sense as the computation of LLR and CER is more complex.

Loss function time (s) std (s)
CROSS 0.87 0.038
CER 2.28 0.072
LLR 2.33 0.090

Table 1: Run times for loss functions

5.2 Experiments on the ASCAD data-set
The ASCAD database provides traces of a first order masked implementation of AES on a
ATMEGA8515. Here, the masks are assumed to be known to simplify the attacks. The tests
were ran on the fixed key portion of the database. Within this data-set several different
options are available. As desynchronization can be added to the data-set this section is split
into two subsections which discuss the results on the synchronized data-set, and the results
on the desynchronized data-set.

For the training phase 45 000 traces were used as the training set, and 5 000 for the
validation set. The remaining 10 000 traces were used as the attacking set to compute the
Guessing Entropy.

5.2.1 Experiments on the synchronized ASCAD data-set

For the synchronized database two different models were used. The best MLP model from
Benadjila et al. [1], and the CNN model that was tuned for this data-set by Zaid et al. [31].

1https://github.com/AESHD/AES_HD_data-set
2http://www.dpacontest.org/v4/42_traces.php
3https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
4https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
5https://github.com/ikizhvatov/randomdelays-traces
6https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
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The hyperparameter configurations that were tested are all possible combinations of batch
sizes 100, 200 and 500. For the CNNs a learning rate of 1e-3 and 50 and 100 epochs ere
used. For the MLPs a learning rate of 1e-5 and 100 and 200 epochs were used.

In Figure 2 it can be seen that for both architectures the models trained with CER as
the loss function are generally best, with the models using Cross Entropy being worst. The
CNNs trained with LLR as a loss function are about as good as the ones trained with Cross
Entropy and the MLPs using LLR are only slightly worse than the MLPs using CER. In
Figure 3 the results using early stopping are displayed. For the MLPs there is not that
significant a difference with the models that were not stopped early, except that some of
the models were stopped very early and display performance that is a lot worse because of
it. For the CNNs it can be seen that the performance of the LLR models is slightly better
than when no early stopping is employed. Additionally, it can be seen that for the CNNs
the models using CER and LLR as loss functions stop a lot earlier than the models using
Cross Entropy.

5.2.2 Experiments on the desynchronized ASCAD data-set

For the desynchronized cases, two different amounts of desynchronization (50 and 100)
tested. In this paper, only the CNN model for each specific desynchronization as described
by Zaid et al. [31] was used. This was because the CNN best models from Benadjila et al.
[1] were very computationally intensive to train. Additionally, for these models Zhang et al.
[33] already tested the CER and categorical cross-entropy loss functions. For the desync 50
case a learning rate of 1e-3 and a batch size of 256 was used, and the models were trained
for 50 epochs. For the desync 100 case a learning rate of 1e-2 and a batch size of 256 was
used, and the models were trained for 50 epochs. These hyperparameters were chosen as
these are the ones used by Zaid et al. [31]. Only one set of hyperparameters was used for
these models as they are computationally a lot more expensive to train than the models for
the synced cases.

In Figure 4 it can be seen that for both amounts of desynchronization the model using
CER performs the best. Additionally, it can be seen that for when the desynchronization is
set to 100, the model using LLR as the loss function does not perform better than random
guessing.
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(a) 50 epochs CNN architecture (b) 100 epochs CNN architecture

(c) 100 epochs MLP architecture (d) 200 epochs MLP architecture

Figure 2: Results on the ASCAD data-set with Cross Entropy (CROSS), Cross Entropy Ratio
(CER) and Log-Likelihood Ratio (LLR) as loss function
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(a) Stopped early MLP architecture (b) Stopped early CNN architecture

Figure 3: Results on the ASCAD data-set with Cross Entropy(CROSS), Cross Entropy Ratio
(CER) and Log-Likelihood Ratio (LLR) as loss function, stopped early

(a) 50 desynced (b) 100 desynced

Figure 4: Results on the desynced ASCAD data-set with Cross Entropy (CROSS), Cross Entropy
Ratio (CER) and Log-Likelihood Ratio (LLR) as loss function
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5.3 Experiments on the AES_HD data-set
The AES_HD data-set provides measurements of an unprotected implementation of AES
on an FPGA.

To test we again use the MLP model from Benadjila et al. [1], and the CNN model
specific to this data-set of Zaid et al. [31]. The same configurations of hyperparameters as
for the synchronized ASCAD set were used for the MLP, and for the CNN, 100 and 200
epochs were used.

For the training phase 45 000 traces were used as the training set, and 5 000 for the
validation set. The remaining 25 000 traces were used as the attacking set to compute the
Guessing Entropy.

In Figure 5 it can again be seen that the models using CER as the loss function generally
perform significantly better than the models using other loss functions. Additionally, in
Figure 6 it can be seen that for the MLPs, the models using LLR perform about as well as
the models using CER, but it can also be seen that the models using CER stop significantly
earlier.

(a) 100 epochs CNN architecture (b) 100 epochs MLP architecture

(c) 200 epochs CNN architecture (d) 200 epochs MLP architecture

Figure 5: Results on the AES HD data-set with Cross Entropy (CROSS), Cross Entropy Ratio
(CER) and Log-Likelihood Ratio (LLR) as loss function
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(a) Stopped early MLP architecture (b) Stopped early CNN architecture

Figure 6: Results on the AES_HD data-set with Cross Entropy (CROSS), Cross Entropy Ratio
(CER) and Log-Likelihood Ratio (LLR) as loss function, stopped early

5.4 Experiments on the DPA_v4 data-set
The DPA_v4.2 data-set was used which provides a masked implementation of AES on an
Atmel ATMega-163 smart card. The masks are assumed to be known here to simplify the
attacks.

To test we again use the MLP model from Benadjila et al. [1], and the CNN model
specific to this data-set of Zaid et al. [31]. The same configurations of hyper-parameters as
for the synchronized AES_HD set were used for both of these models.

For the training phase 4 000 traces were used as the training set, and 500 for the validation
set. The remaining 500 traces were used as the attacking set to compute the Guessing
entropy.

In Figure 7 the results significantly deviate from all of the other results. Firstly, for the
CNNs, the model using CER and batch size 500 is significantly worse than all the other
models for both 100 and 200 epochs. Additionally, for the MLPs, the models using LLR
are not good enough to mount successful attacks. In Figure 8 it can also be seen that none
of the models actually stopped early, and therefore the results are similar to the results in
Figure 7, except that one of the MLP models using LLR is now able to mount a successful
attack.
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(a) 100 epochs CNN architecture (b) 100 epochs MLP architecture

(c) 200 epochs CNN architecture (d) 200 epochs MLP architecture

Figure 7: Results on the DPA_v4 data-set with Cross Entropy (CROSS), Cross Entropy Ratio
(CER) and Log-Likelihood Ratio (LLR) as loss function

(a) Stopped early MLP architecture (b) Stopped early CNN architecture

Figure 8: Results on the DPA_v4 data-set with Cross Entropy (CROSS), Cross Entropy Ratio
(CER) and Log-Likelihood Ratio (LLR) as loss function, stopped early
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5.5 Experiments on the AES_RD data-set
The AES_RD data-set is a set of measurements of an AES implementation with random
delays introduced throughout the execution of the algorithm. Because of this, the MLP
model that was used for the other data-sets is not powerful enough to conduct an attack on
this data-set. Therefore the only model that was tested is the model specific to this data-set
of Zaid et al. [31]. This model was tested for all three loss functions with a batch size of
50, a learning rate of 1e-3, and it was trained for 50 epochs. These hyperparameters were
chosen as these are the ones used by Zaid et al. [31]. Only one set of hyperparameters was
used for these models as they are computationally a lot more expensive to train than the
models for the synced cases. For the training phase 20 000 traces were used as the training
set, and 5 000 for the validation set. The remaining 25 000 traces were used as the attacking
set to compute the Guessing Entropy.

In Figure 9 it can again be seen that the model using CER as the loss function performs
better than both the model using LLR, and the model using regular Cross Entropy.

Figure 9: Results on the AES_RD data-set with Cross Entropy (CROSS), Cross Entropy Ratio
(CER) and Log-Likelihood Ratio (LLR) as loss function

6 Discussion
The results showcased in the results section of the experiments on DPA_v4 are inconsistent
with all the other results. The MLPs using LLR perform only slightly better than random
guessing on this data-set and we have no real explanation for this. There are also some
strange results regarding CER with a batch size of 500 and 200 epochs in this data-set for
the CNN architecture. This could be explained by the fact that there are only 4 000 training
samples, and that a larger batch size for CER resulted in bad results.
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7 Conclusion and future work
As can be seen in the results using CER as a loss function in the context of side channel
analysis is consistently better than using Cross Entropy. In addition to reproducing the
results from Zhang et al. [33] several different CNN architectures were tested, and in almost
every case CER used as a loss function outperforms Cross Entropy. LLR performs worse
than CER in almost every scenario, but it is generally better than Cross Entropy. Some
other works by Zaid et al. [30] have recently proposed another loss function specifically for
side channel analysis. This loss function was however not tested for the case of imbalanced
classes, but for the Identity leakage model it is shown that it outperforms both Cross Entropy
and CER.

Additionally, the results show that the results from Zhang et al. [33] concerning CER
as a metric are reproducible, and this means that CER could be used as a metric to more
accurately evaluate Deep Learning models, even when classes are severely imbalanced.

In future work, the impact of early stopping on the effectiveness of side channel attacks
could be investigated. Additionally, the effectiveness of LLR and CER as loss functions when
the leakage model does not result in imbalanced classes could be investigated. Furthermore,
the ranking-loss function [30] could be compared to CER and LLR as loss functions when
classes are imbalanced. Finally, developing new loss functions using genetic programming
to evolve new loss functions specifically for SCA could be interesting.
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